Gocapital.ru

Мировой кризис и Я
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Анализ тренда временного ряда

Анализ тенденции развития (тренда) временного ряда

Севастополь

2011

1. Теоретические сведения.. 4

1.1 Анализ тенденции развития (тренда) временного ряда 4

1.2 Декомпозиция временного ряда. Анализ сезонных колебаний 5

2. Анализ ВРЕМЕННЫХ РЯДОВ с помощью системы MINITAB.. 11

3. Задание по выполнению лабораторной работы.. 23

4. Порядок выполнения работы.. 25

5. Контрольные вопросы.. 25

6. Библиографический список.. 26

Цель Работы

Изучение и получение практических навыков в использовании анализа временных рядов, выявлении тенденции их развития (тренда), сезонных колебаний, прогноз динамики развития временных рядов при обработке экономической информации с помощью статистического пакета MINITAB For Windows

Теоретические сведения

Анализ тенденции развития (тренда) временного ряда

На практике экономист весьма часто сталкивается с тем, что исходные данные, которыми он распола­гает для выявления той или иной закономерности, представлены в виде временных (динамических) рядов. Такие ряды описывают изменение некоторой характеристики во времени. Каждый член (уровень) такого ряда связан с соответствующим моментом вре­мени или временным интервалом. Разумеется, уровни ряда долж­ны быть сопоставимыми по своему содержанию. Показатели вре­менных рядов формируются под совокупным влиянием множества длительно и кратковременно действующих факторов и, в том числе, различного рода случайностей. Изменение условий развития явле­ния приводит к более или менее интенсивной смене самих фак­торов, к изменению силы и результативности их воздействия и, в конечном счете, к вариации уровня изучаемого явления во вре­мени. Лишь в очень редких случаях в экономике встречаются чисто стационарные ряды, т. е. ряды, в которых не наблюдаются систематические изменения в средних значениях уровней, их дис­персиях, и эти характеристики не зависят от начала отсчета вре­мени. В таких случаях вариацию уровней можно изучать с по­мощью специального раздела математической статистики — теории стационарных процессов. В основном временные ряды, с которыми имеют дело в экономике, не являются стационарными. Последо­вательность расположения исследуемых данных во времени в та­ких рядах имеет существенное значение для анализа, т. е. время здесь выступает как один из определяющих для изучаемого явле­ния факторов.

Можно выделить три основные задачи исследования временных рядов.

Первая из них заключает­ся в описании изменения соответствующего показателя во вре­мени и выявлении тех или иных свойств исследуемого ряда. Для этого прибегают к разнообразным способам: расчету обобщающего показателя изменения уровней во времени — среднего темпа роста; применению различных сглаживающих фильтров, умень­шающих колебания уровней во времени и позволяющих более чет­ко представить тенденции развития; подбору кривых, характери­зующих эту тенденцию; выделению сезонных и иных периодиче­ских и случайных колебаний; измерению зависимости между чле­нами ряда (автокорреляции). К методам описания какого-либо свойства динамики можно с некоторым основанием отнести и ме­тоды проверки наличия или отсутствия долговременных тенденций в ряду.

Второй важной задачей анализа является объяснение механиз­ма изменения уровней ряда. Для ее решения обычно прибегают к регрессионному анализу. Наконец, описание изменения времен­ного ряда и объяснение механизма формирования ряда часто ис­пользуются для статистического прогнозирования, которое в боль­шинстве случаев сводится к экстраполяции обнаруженных тен­денций развития.

Анализ временного ряда и последующий прогнозирование его развития может использоваться для:

— планирования в экономике, производстве, торговле;

— управления и оптимизации, протекающих в обществе социально-экономических процессов;

— частичного управления важными параметрами демографических процессов и экологической ниши общества;

— принятия оптимальных решений в бизнесе.

В данной лабораторной работе анализ временного ряда будет производиться в статистическом пакете «MINITAB».

Minitab позволяет анализировать данные зависящие от времени (временные ряды), выявлять основные закономерности этих зависимостей и на основе полученных моделей прогнозировать будущие значения для этих рядов.

Minitab включает следующие основные виды анализа временных рядов:

Trend Analysis — анализ линии тренда с использованием четырех типов аппроксимирующих кривых.

Decomposition — классическая декомпозиция временных рядов.

Moving Average — вычисление скользящего среднего.

Exp Smoothing — экспоненциальное сглаживание временного ряда.

Lag— смещение рядов на заданное значение.

Autocorrelation— вычисление автокорреляционной функции.

Cross Correlation — вычисление кросскорреляционной функции.

ARIMA оценивание модели Бокса-Дженкинса.

Понятие тенденция развития не имеет достаточно четкого опре­деления. Обычно тенденцию стремятся представить в виде более или менее гладкой кривой, которой соответствует некоторая функция времени. Эта кривая, назовем ее трендом, характеризует основ­ную закономерность движения во времени и в известной мере (но не полностью) свободна от случайных воздействий. Тренд опи­сывает некоторую усредненную для достаточно протяженного пе­риода наблюдения тенденцию развития во времени. В большин­стве случаев полученная траектория связывается исключительно с ходом времени. Предполагается, что с помощью переменной время можно выразить влияние всех основных факторов. Меха­низм их влияния в явном виде не учитывается.

Для анализа линии тренда в статистическом пакете «MINITAB» необходимо выполнить следующую операцию: Stat > Time Series > Trend Analysis.На мониторе появится следующее диалоговое окно (Рис 1.1):

Рисунок 1.1 – Диалоговое окно «Анализ линии тренда»

Диалоговое окновключает в себя следующие параметры:

Variable: вводится идентификатор (название) столбца в таблице с исследуемым временным рядом.

Model Type: определяется тип модели для аппроксимации тренда временного ряда. В используемой программе Minitab рассматриваются следующие четыре типа моделей:

— Exponential growth — экспоненциального роста;

— S-Curve (Pearl-Reed logistic)- логистическая S – кривая.

Generate forecasts: Отмечается при необходимости просчитать прогнозные значения, на графике эти точки отмечаются красным цветом.

Number of forecasts: Вводится число точек для прогноза.

Starting from origin: Вводится положительное число, определяющее с какой точки начинать считать прогнозные значения. Если эта позиция остается не заполненной Minitab начинает считать прогнозные значения, начиная с последней точки исходного временного ряда. Например, если в примере 1 необходимо сделать прогноз производства автомобилей на три года вперед, начиная с последнего года, т. е. с 22-го по счету, то в эту позицию вводят число 21 и программа подсчитает прогноз в точках 22, 23, 24.

Читать еще:  Характеристика качественного анализа

Title: Вводится вами заданный заголовок для выводимого графика.

Результат проведенного исследования Minitab выводит в виде графика, на котором показаны исходные данные, аппроксимирующая их линия тренда и рассчитанные прогнозные значения для этого ряда. В качестве оценок точности аппроксимации и вычисленного прогноза Minitab использует следующие три показателя:

MAPE — средняя абсолютная ошибка в процентах;

MAD — среднее абсолютное отклонение;

MSD — среднеквадратическое отклонение. Близко по своей структуре к среднеквадратической ошибке, но не зависит от числа степеней свободы для разных моделей, поэтому может быть использовано для сравнения точности разных моделей.

Вычисляются эти оценки точности следующим образом:

Вычисляются эти оценки точности следующим образом:

; , где

;

Определение типа модели для аппроксимации тренда временного ряда – одна из наиболее сложных задач анализа временных рядов. Оценка коэффициентов уравнения тренда осуществляется по методу наименьших квадратов (МНК).

Наиболее часто в экономике при аппроксимации тренда используются следующие виды функций:

— линейная

— параболическая

— степенная

— экспоненциальная

— функцию Гомперца

— логистическая

Пример 1: Рассмотрим динамику производства автомобилей и цен на них в мире за 1990 –2010 гг., данные представлены в таблице 1.1. Необходимо определить тип модели для аппроксимации имеющихся временных рядов. В качестве критерия оптимальности выбора модели воспользуемся показателем MSD — среднеквадратическим отклонением.

Анализ временных рядов

Составляющие временного ряда

При анализе временного ряда выделяют три составляющие: тренд, сезонность и шум. Тренд — это общая тенденция, сезонность, как следует из названия — влияния периодичности (день недели, время года и т.д.) и, наконец, шум — это случайные факторы.

Что бы понять отличие этих трёх величин, смоделируем функцию расстояния от земли до луны. Известно, что в среднем луна каждый год отдаляется на 4 см — это тренд, в течение дня луна совершает оборот вокруг земли и расстояние колеблется от

405400 км — это сезонность. Шум — это «случайные» факторы, например, влияние других планет. Если мы изобразим сумму этих трёх графиков, то мы получим временной ряд — функцию, показывающую изменение расстояния от земли до луны во времени.

Тренд. Методы сглаживания

Методы сглаживания необходимы для удаления шума из временного ряда. Существуют различные способы сглаживания, основные — это метод скользящей средней и метод экспоненциального сглаживания.

Метод скользящей средней

Идея метода скользящего среднего заключается в смещении точки графика на среднее значение некоторого интервала. В качестве интервала берут нечётное количество участков, например, три — предыдущий, текущий и следующий периоды, находится среднее и принимается в качестве сглаженного значения:

У данного метода есть проблема: случайное высокое или низкое значение сильно влияют на скользящую линию. В качестве решения были введены веса. Для распределение веса используют оконные функции, основные оконные функции — это окно Дирихле (прямоугольная функция), В-сплайны, полиномы, синусоидальные и косинусоидальные:

Минусы использования скользящей средней — это сложность вычислений и некорректные данные на концах графика.

Как видно из графика, увеличение n выдаёт более плавную функцию, таким образом нивелируя более мелкие колебания во временном ряду. Обратите внимание, что при сглаживании не имеет значения, совпадает график среднего с графиком данных или нет, целью является построение правильной формы.

Метод экспоненциального сглаживания

Метод экспоненциального сглаживания получил своё название потому, что в сглаженной функции экспоненциально убывает влияние предыдущего периода с неким коэффициентом чувствительности α. Сглаженное значение находится как разница между предыдущим действительным значением и рассчитанным значением:

Коэффициент чувствительности, α, выбирается между 0 и 1, в качестве базиса используют значение 0,3. Если есть достаточная выборка, то коэффициент подбирается путём оптимизации.

Методы прогнозирования

Методы прогнозирования основываются на выявлении тенденции во временном ряду и последующем использовании найденного значения для предсказания будущих значений. В методах прогнозирования выделяют тренд и сезонность, в общем случае, все типы сезонности могут быть найдены последовательными итерациями. Например, при анализе данных за год, можно выделить сезонность времени года, а в оставшемся тренде найти сезонность по дням недели и так далее.

Двойное экспоненциальное сглаживание

Двойное экспоненциальное сглаживание выдаёт сглаженное значение уровня и тенденции.

Smooth — сглаживание, сглаженный уровень на период τ, sτ, зависит от значения уровня на текущий период (Dτ), тренда за предыдущий период (tτ-1) и рассчитанного сглаженного значения на предыдущий период (sτ-1):
sτ = αDτ + (1 — α)(sτ-1 + tτ-1) Trend — тенденция, тренд на период τ, tτ, зависит от рассчитанного сглаженного значения за предыдущий и текущий периоды (sτ и sτ-1) и от предыдущей тенденции:
tτ = β(sτ-sτ-1) + (1-β)tτ-1 Рассчитанные по данным формулам уровень и тренд могут быть использованы в прогнозировании:
D’τ+h = sτ + h·tτ

При расчёте, значения s и t для первого периода назначают s1 = D1 и t=0

Метод Хольт-Винтерса

Метод Хольт-Винтерса включает в себя сезонную составляющую, т.е. периодичность. Существуют две разновидности метода — мультипликативный и аддитивный. В отличие от двойного экспоненциального сглаживания, метод Хольт-Винтерса изучает также влияние периодичности.

Общая идея нахождения значений сглаженного уровня, тренда и периодичности заключается в следующем: сглаженный уровень (s — smooth, иногда используют l — level) — это базовый уровень значений, тренд (t — trend) — это показатель скорости роста, разница между сглаженными значениями текущего и предыдущего периода. Для изучения периодичности (p — period), мы разбиваем данные на периоды размером k и выделяем влияние каждого элемента (1,2. k) периода на сглаженный уровень.

Читать еще:  Анализ кадрового потенциала организации

Для более точных расчётов вводится показатель обратной связи. В общем понимании, обратная связь — это влияние предыдущих значений на новые: например, когда Вы начинаете говорить, Вы регулируете громкость своего голоса в зависимости от того, что слышат Ваши уши — это и есть обратная связь.

Для начала расчётов, значения s, t и k, в самом простом виде, могут быть выбираны как sτ = Dτ, t = 0, p = 0.

Для прогнозирования используется следующая формула:

Мультипликативный метод Хольт-Винтерса

Мультипликативный метод отличается от аддитивного тем, что параметры, влияющие на периодичность и сглаженный уровень рассчитываются отношением:

Для прогнозирования используется следующая формула:

Метод Хольт-Винтерса в excel

Таблица для скачивания в форматах ods и xls.

Качество прогнозирования

Проверка качества прогнозирования возможна в случае наличия достаточной выборки и является важной проверкой на достоверность прогноза, для проверки и оптимизации значений α, β и γ необходимо построить прогноз на существующие данные, например, если у нас в наличии данные за пять лет и мы хотим предсказать следующий год, то необходимо построить модель на первых четырёх годах, проверить и оптимизировать коэффициенты для минимизации ошибки между прогнозом и данными на 5й год. После оптимизации модель может быть перестроена с учётом последнего периода для повышения точности, далее следует построение прогноза.

Методы оптимизации будут описаны в отдельной статье, ниже представлен пример прогнозирования методом Хольт Винтерса.

Построение, анализ и применение для прогнозирования тренд-сезонной модели временного ряда

Предварительный анализ заданного временного ряда на предмет наличия тренда. Обоснование наличия сезонности по графическому представлению одноименных элементов ряда разных лет. Применение модели для прогноза. Выбор типа остатков и корректировка модели.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Факультет экономики и менеджмента

Кафедра Экономической кибернетики

Построение, анализ и применение для прогнозирования тренд-сезонной модели временного ряда

1) Предварительный анализ заданного временного ряда на предмет наличия тренда:

a) графическое представление ряда;

2) Обоснование выбора типа модели основного тренда по свойствам кривых роста. Экономический смысл параметров выбранной модели.

3) Обоснование наличия сезонности по графическому представлению одноименных элементов ряда разных лет. Рекомендуется предварительно исключить из исходного ряда основную тенденцию развития (тренд, укрупненные или сглаженные значения) вычитанием или делением. Описать характер сезонных колебаний и по возможности объяснить причины.

4) Построение модели декомпозиции временного ряда. Обоснование формы модели: аддитивная, мультипликативная или смешанная.

5) Анализ точности модели.

6) Проверка адекватности моделей данному временному ряду. Анализ свойств остаточной компоненты.

7) Применение модели для прогноза (точечный и интервальный прогноз на два периода сезонности с заданной доверительной вероятностью Р = 0,95).

8) Верификация прогноза (сопоставление с контрольными данными). Выводы о возможности дальнейшего применения модели.

9) Возможно, изменение модели.

Житлові будівлі, тис. м 2 загальної площі

Предварительный анализ заданного временного ряда на предмет наличия тренда и сезонности

Тренд — это длительная тенденция изменения экономических показателей, т.е. изменение, определяющее общее направление развития, основную тенденцию временных рядов. Тренд характеризует основные закономерности движения во времени, в некоторой мере свободные от случайных воздействий. При разработке моделей прогнозирования тренд оказывается основной составляющей прогнозируемого временного ряда, на которую накладываются другие составляющие. Результат при этом связывается исключительно с ходом времени. Предполагается, что через время можно выразить влияние всех основных факторов. Если тренд является монотонным (устойчиво возрастает или устойчиво убывает), то анализировать такой ряд обычно нетрудно. Если временные ряды содержат значительную ошибку, то первым шагом выделения тренда является сглаживание.

Представляем исходные значения на точечном графике

Сглаживание всегда включает некоторый способ локального усреднения данных, при котором несистематические компоненты взаимно погашают друг друга. Самый общий метод сглаживания — скользящее среднее, в котором каждый член ряда заменяется простым или взвешенным средним n соседних членов, где n — ширина окна. Вместо среднего можно использовать медиану значений, попавших в окно.

Для построения модели тренда проведем сглаживание временного ряда с периодом 4. Для этого воспользуемся формулой средней хронологической. В нашем случае данная формула будет выглядеть следующим образом.

Где t = 3,…,n-2; к = 4 — длина цикла сезонности.

Обоснование выбора типа модели основного тренда по свойствам кривых роста

Построив 4 прироста по сглаженному ряду наблюдаем следующую картину

Только четвертые приросты колеблются вокруг постоянного уровня, скорее всего мы можем взять полином третьей степени.

С помощью функции ЛИНЕЙН построим уравнение модели:

Порядок анализа временных рядов

Цель анализа временных рядов обычно заключается в построении математической модели ряда, с помощью которой можно объяснить его поведение и осуществить прогноз на определенный период времени. Анализ временных рядов включает следующие основные этапы.

Построение и изучение графика. Анализ временного ряда обычно начинается с построения и изучения его графика.

Если нестационарность временного ряда очевидна, то первым делом надо выделить и удалить нестационарную составляющую ряда. Процесс удаления тренда и других компонент ряда, приводящих к нарушению стационарности, может проходить в несколько этапов. На каждом из них рассматривается ряд остатков, полученный в результате вычитания из исходного ряда подобранной модели тренда, или результат разностных и других преобразований ряда. Кроме графиков, признаками нестационарности временного ряда могут служить не стремящаяся к нулю автокорреляционная функция (за исключением очень больших значений лагов).

Читать еще:  Тип моделей используемых в экономическом анализе

Подбор модели для временного ряда. После того, как исходный процесс максимально приближен к стационарному, можно приступить к подбору различных моделей полученного процесса. Цель этого этапа – описание и учет в дальнейшем анализе корреляционной структуры рассматриваемого процесса. При этом на практике чаще всего используются параметрические модели авторегрессии-скользящего среднего (ARIMA-модели)

Модель может считаться подобранной, если остаточная компонента ряда является процессом типа «белого шума», когда остатки распределены по нормальному закону с выборочным средним равным 0. После подбора модели обычно выполняются:

· оценка дисперсии остатков, которая в дальнейшем может быть использована для построения доверительных интервалов прогноза;

· анализ остатков с целью проверки адекватности модели.

Прогнозирование и интерполяция. Последним этапом анализа временного ряда может быть прогнозирование его будущих (экстраполяция) или восстановление пропущенных (интерполяция) значений и указания точности этого прогноза на базе подобранной модели. Не всегда удается хорошо подобрать математическую модель для временного ряда. Неоднозначность подбора модели может наблюдаться как на этапе выделения детерминированной компоненты ряда, так и при выборе структуры ряда остатков. Поэтому исследователи довольно часто прибегают к методу нескольких прогнозов, сделанных с помощью разных моделей.

Методы анализа. При анализе временных рядов обычно используются следующие методы:

· графические методы представления временных рядов и их сопутствующих числовых характеристик;

· методы сведения к стационарным процессам: удаление тренда, модели скользящего среднего и авторегрессии;

· методы исследования внутренних связей между элементами временных рядов.

Графические методы анализа временных рядов

Зачем нужны графические методы. В выборочных исследованиях простейшие числовые характеристики описательной статистики (среднее, медиана, дисперсия, стандартное отклонение) обычно дают достаточно информативное представление о выборке. Графические методы представления и анализа выборок при этом играют лишь вспомогательную роль, позволяя лучше понять локализацию и концентрацию данных, их закон распределения.

Роль графических методов при анализе временных рядов совершенно иная. Дело в том, что табличное представление временного ряда и описательные статистики чаще всего не позволяют понять характер процесса, в то время как по графику временного ряда можно сделать довольно много выводов. В дальнейшем они могут быть проверены и уточнены с помощью расчетов.

При анализе графиков можно достаточно уверенно определить:

· наличие тренда и его характер;

· наличие сезонных и циклических компонент;

· степень плавности или прерывистости изменений последовательных значений ряда после устранения тренда. По этому показателю можно судить о характере и величине корреляции между соседними элементами ряда.

Построение и изучение графика. Построение графика временного ряда – совсем не такая простая задача, как это кажется на первый взгляд. Современный уровень анализа временных рядов предполагает использование той или иной компьютерной программы для построения их графиков и всего последующего анализа. Большинство статистических пакетов и электронных таблиц снабжено теми или иными методами настройки на оптимальное представление временного ряда, но даже при их использовании могут возникать различные проблемы, например:

· из-за ограниченности разрешающей способности экранов компьютеров размеры выводимых графиков могут быть также ограничены;

· при больших объемах анализируемых рядов точки на экране, изображающие наблюдения временного ряда, могут превратиться в сплошную черную полосу.

Для борьбы с этими затруднениями используются различные способы. Наличие в графической процедуре режима «лупы» или «увеличения» позволяет изобразить более крупно выбранную часть ряда, однако при этом становится трудно судить о характере поведения ряда на всем анализируемом интервале. Приходится распечатывать графики для отдельных частей ряда и состыковыватьих вместе, чтобы увидеть картину поведения ряда в целом. Иногда для улучшения воспроизведения длинных рядов используется прореживание, то есть выбор и отображение на графике каждой второй, пятой, десятой и т.д. точки временного ряда. Эта процедура позволяет сохранить целостное представление ряда и полезна для обнаружения трендов. На практике полезно сочетание обеих процедур: разбиения ряда на части и прореживания, так как они позволяют определить особенности поведения временного ряда.

Еще одну проблему при воспроизведении графиков создают выбросы – наблюдения, в несколько раз превышающие по величине большинство остальных значений ряда. Их присутствие тоже приводит к неразличимости колебаний временного ряда, так как масштаб изображения программа автоматически подбирает так, чтобы все наблюдения поместились на экране. Выбор другого масштаба на оси ординат устраняет эту проблему, но резко отличающиеся наблюдения при этом остаются за границами экрана.

Вспомогательные графики. При анализе временных рядов часто используются вспомогательные графики для числовых характеристик ряда:

· график выборочной автокорреляционной функции (коррелограммы) с доверительной зоной (трубкой) для нулевой автокорреляционной функции;

· график выборочной частной автокорреляционной функции с доверительной зоной для нулевой частной автокорреляционной функции;

Первые дваиз этих графиков позволяют судить о связи (зависимости) соседних значений временного рада, они используются при подборе параметрических моделей авторегрессии и скользящего среднего. График периодограммы позволяет судить о наличии гармонических составляющих во временном ряде.

Пример анализа временных рядов

Покажем последовательность анализа временных рядов на следующем примере. В таблице 8 приведены в относительных единицах данные продаж продовольственных товаров в магазине (Yt). Разработать модель продаж и провести прогнозирование объема продаж на первые 6 месяцев 1996 года. Выводы обосновать.

Ссылка на основную публикацию
Adblock
detector